
On Distributed Solution of Ill-Conditioned System of Linear Equations
under Communication Delays

Kushal Chakrabarti1, Nirupam Gupta2 and Nikhil Chopra3

Abstract— This paper considers a distributed solution for
a system of linear equations. The underlying peer-to-peer
communication network is assumed to be undirected, however,
the communication links are subject to potentially large but con-
stant delays. We propose an algorithm that solves a distributed
least-squares problem, which is equivalent to solving the system
of linear equations. Effectively, the proposed algorithm is
a pre-conditioned version of the traditional consensus-based
distributed gradient descent (DGD) algorithm. We show that
the accuracy of the solution obtained by the proposed algorithm
is better than the DGD algorithm, especially when the system
of linear equations is ill-conditioned.

I. INTRODUCTION

Two of the major existing challenges in solving a set
of linear equations, Ax = b, are high dimensionality and
ill-conditioning. When the dimension of b (or A) is large,
the workload of solving this problem can be distributed
by splitting among a number of agents [1], [2], [3], [4].
The focus of existing distributed algorithms is primarily on
accuracy and efficiency in terms of required computational
capacity and memory.

In this paper we solve the system of equations

Ax = b, (1)

where rows of A ∈ RN×n and corresponding elements
of b ∈ RN are distributed among m agents. Each agent
knows only a subset (Ai, bi) of the rows in (A, b) so
that A =

[
(A1)T . . . (Am)T

]T ∈ RN×n and b =[
(b1)T . . . (bm)T

]T ∈ RN , where Ai ∈ Rni×n, bi ∈ Rni

and N =
∑m
i=1 n

i. The agents can communicate with each
other over a peer-to-peer network.

The network is represented as an undirected fixed graph
G = (V,E), with m nodes V = {1, . . . ,m} =: [m]
representing the agents and the set of edges E, where an edge
(i, j) ∈ E between two nodes i, j ∈ V represents that the
agent i and agent j are immediate neighbours. It is assumed
that there is no self edge from a node i ∈ V to itself.

We consider two major challenges:
• ill-conditioned matrix A,
• delay in the communication links.

*This work is being carried out as a part of the Pipeline System Integrity
Management Project, which is supported by the Petroleum Institute, Khalifa
University of Science and Technology, Abu Dhabi, UAE.

1Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742, USA
(kchakrabarti0@gmail.com).

2Department of Computer Science, Georgetown University, Washington,
D.C. 20057, USA (nirupam.gupta@georgetown.edu).

3Department of Mechanical Engineering, University of Maryland, Col-
lege Park, MD 20742, USA (nchopra@umd.edu).

The communication delay from an agent i to agent j is
modeled as τ ij , where τ ij = τ ji > 0 is constant for any edge
(i, j) ∈ E. Other approaches to study the delay robustness
problem can be found in [3], [5], [6].

The considered problem has also been addressed in prior
works [2], [3], [5], [7], [8]. Initially [2] and later on [3] con-
sider directed time-varying networks. [3] proves the global
convergence of a projection-based asynchronous algorithm,
with the assumption of extended neighbour graphs being
repeatedly jointly strongly connected and bounded delays,
and provides an upper bound on the convergence rate.
Random communications have been considered in [5], [8]
and algorithms have been provided with almost sure con-
vergence to a solution of (1). [7] proves convergence of a
communication-efficient extension of the algorithm in [2]. In
the algorithm proposed in [7], each agent also needs to share
the number of their neighbours. We guarantee convergence in
case of a deterministic network topology, without assuming
a bound on the constant delays and by the agents sharing
only their estimates with neighbors.

The solution of (1) can also be obtained by solving
a least-squares problem, such as in [3], [9], [10], [11].
When (1) is not solvable, the least-squares formulation
has an advantage of finding the solution that best fits (1).
The least-squares problem can also be solved by general
distributed optimization algorithms that have been discussed
in the literature. However, ill-conditioning of A poses an
additional challenge when there are communication delays
between the agents. Existing distributed optimization al-
gorithms [6], [12], [13], [14], [15] fare poorly if A is
ill-conditioned. The algorithms in [12], [13], [14] require
decreasing stepsize, which leads to slower convergence. [6]
needs additional variables to be shared with neighbouring
agents. [14] requires prior information on the delays. The
algorithm proposed in [15] globally converges under strict
convexity of each agent’s cost function. Moreover, when A is
ill-conditioned, these gradient-based optimization approaches
suffer from poor convergence rate or may even converge to
an undesired point. We follow the same distributed optimiza-
tion approach, however, our algorithm converges faster with-
out requiring strict convexity of the local costs and shares
only the estimates between neighbours. The key ingredient
of our proposed approach is local pre-conditioning, which
is obtained by solving an appropriate Lyapunov equation.
Additionally, the proposed algorithm does not require any
information about the heterogeneous communication delays,
albeit that they are constant.

TABLE I: Notations

Symbol Meaning
N i neighbor set of node i
η(A) nullity of matrix A
ẋ first derivative of x w.r.t time t
|S| cardinality of a set S
A � 0 matrix A is positive definite
In identity matrix of order n
L∞ set of bounded functions
Sn
+ set of symmetric positive semi-definite matrices of

order n
Sn
++ set of symmetric positive definite matrices of order n

A. Summary of Contributions:

We solve (1) by solving the least-squares problem,

minimize
xi∈Rn,∀i∈[m]

m∑
i=1

1

2

∥∥Aixi − bi∥∥2
subject to: xi = xj , ∀j ∈ N i, ∀i ∈ V. (2)

[16] uses a similar approach with stricter restrictions on Ai.
For now, we make the following assumptions:

Assumption 1: There is no noise in the measured data.
Assumption 2: G is a connected graph.
Assumption 3: η(A) = 0, whereas for each agent i ∈ V,
η(Ai) > 0.

Lemma 1: Under Assumption 2, (2) and the following
optimization problems are equivalent:

minimize
x∈Rn

1

2
‖Ax− b‖2 . (3)

Proof: See Appendix A.
Problem (2) can be solved using existing distributed

optimization algorithms, such as [17], [18], [19]. This fact
combined with Lemma 1 and equivalency of problem (1)
and (3) enable us to formulate the following distributed
solution of (1). Each agent i ∈ V knows only its own cost
function based on (Ai,bi) and minimizes that cost cooper-
atively, while sharing only its solution with its neighbour
agents, as represented in problem (2).

Remarks 1: The aggregate cost (1/2) ‖Ax− b‖2 is
convex. If η(A) = 0, then A has full column rank. So the
aggregate cost is strictly convex and, hence, has a unique
minima. Thus, Assumption 3 implies that (1) has a unique
solution x∗ satisfying Ax∗ = b.

Compared to the existing works that address communica-
tion delays in distributed optimization, the major contribu-
tions of our proposed algorithm are follows:

1) Higher robustness to ill-conditioning of A, un-
like [12], [13], [14], [15].

2) Local agents’ costs need not be strictly convex, i.e. Ai

need not be full-rank, unlike [12], [15].
3) The communication delays are apriori unknown, unlike

[14].
4) Addressing communication delays in solving least-

squares formulation, unlike [2], [3].

II. SHORTCOMING OF DISTRIBUTED GRADIENT
METHOD

Our goal is to design a distributed optimization algorithm
that solves (2) for ill-conditioned matrix A and in the
presence of constant communication delays in the network.
In this section we show that the distributed gradient descent
method, which is the base of gradient-based distributed opti-
mization methods, can not solve the distributed optimization
problem (2) in the presence of communication delay.

Distributed gradient descent (DGD) [19] is a consensus-
based iterative algorithm for solving distributed optimization
problems. Here each agent i maintains a local estimate
of global minima, let it be denoted by xi(t) for iteration
t. All the agents update their local estimates using their
local costs’ gradients and current local estimates of their
neighbors. Theoretically, under Assumption 2, if there is
no communication delay in the network then the agents’
estimates converge to common global minima. However, in
the presence of communication delays an agent receives past
(and not the current) local estimates from its neighbors.
Consequentially, in DGD the agents’ local estimates need
not converge to global minima or even reach consensus, as
shown below. Specifically, considering delay in inter-agent
communications, each local agent i updates its estimate for
x∗ according to

ẋi(t) =− δ(t)(Ai)T (Aixi(t)− bi)

+

m∑
j=1

wij(xj(t− τ ji)− xi(t)), (4)

where xi(t) ∈ Rn is estimate computed by agent i after t
iterations, δ(t) > 0 is a stepsize along descent direction after
t iterations, wij ∈ R is the weight assigned by agent i on
the estimate computed by agent j and τ ii = 0. The weights
wij satisfy Assumption 1 of [19].

Example 1. Consider the following numerical example:
A1 =

[
1 0.99

]
, A2 =

[
1 1.01

]
, b1 = b2 = 1, τ ij = 2,

n = m = 2 and the network graph is a cycle.
We implement algorithm (4) with parameters δ(t) = 1/t;

wij = 1/2 if j ∈ N i ∪ {i} and wij = 0 otherwise. It can
be seen from Fig. 1 that, DGD fails to estimate x∗ for the
above problem where A has condition number 200. Also,
convergence depends on the initial values of the agent states
(inset of Fig. 1).

III. PROPOSED ALGORITHM

In this section, we propose a distributed optimization
algorithm for solving (1) that is robust to communication
delays even when the matrix A is ill-conditioned.

The proposed algorithm is a modification of proportional-
integral (PI) consensus-based gradient descent method [15],
wherein we (a) remove the integral terms from the algo-
rithm and (b) introduce pre-conditioning at every node. It
is evident from the analysis of the proposed method, that
integral terms are not required for linear problems. The pre-
conditioning matrices have been introduced in the algorithm
to take care of ill-conditioning of A. Even in the synchronous

Fig. 1: Temporal evolution of error norm for estimate of each agent∥∥xi(t)− x∗∥∥ for Example 1, under DGD.

setting without any communication delay, ill-conditioning of
A slows down convergence or, even worse, can make the
agents converge to an undesired solution. Proper choice of
conditioning matrices can tolerate ill-conditioning.

For each agent i ∈ [m], we denote the local gradients as

φi(xi) := (Ai)T (Aixi − bi). (5)

Define local preconditioner matrix Ki which is the solution
of the Lyapunov equation [20]

−N iKi −KiN i = −2kIn, (6)

with k > 0 and N i = (Ai)TAi + |N i|In. Since N i � 0 and
k > 0, (6) has a unique symmetrical solution that is specified
later in the convergence analysis of the algorithm. Using the
above definitions, we describe Algorithm 1 below.

Algorithm 1
1: for t = 0, 1, 2, ... do
2: for each agent i ∈ [m] do
3: receive xj(t− τ ji), ∀j ∈ N i

4: update estimate

ẋi(t) = Ki[η(ηIn +Ki)−1∑
j∈N i

(xj(t− τ ji)− xi(t))− φi(xi(t))]. (7)

5: transmit updated estimate to all j ∈ N i

6: end for
7: end for

In step 3 of Algorithm 1, each xj(t − τ ji) can be set to
any value for t < τ ji. The choice of preconditioner matrices
Ki addresses ill-conditioning of the matrix A, helping the
local estimates to converge quickly to the desired solution.

A. Convergence Analysis

Lemma 2: For every i ∈ [m], K̄i := (Ki+ηIn)−1(Ki−
ηIn) is Schur for any η > 0.

Proof: See Appendix B.
In order to establish convergence of Algorithm 1, we

develop a framework based on [15] and pre-conditioning.
The analysis of our algorithm then easily follows from this

framework. Note that, the following framework is solely for
analysis purposes.

Define consensus terms for each agent:

vi =
∑
j∈N i

vij , vij = Ki(rij − xi). (8)

In this framework, rij is an external input to agent i from its
neighbor j ∈ N i. In order to evaluate these rij’s, we define
the following transformations [15]:

~sij =
1√
2η

(−vij + ηrij), ~sij =
1√
2η

(vij + ηrij), (9)

~sji =
1√
2η

(vji + ηrji), ~sji =
1√
2η

(−vji + ηrji), (10)

where η > 0. Information about agent j’s estimate is
contained in vji which is sent to neighbor agent i ∈ N j

in the form of ~sji. Considering the delay model defined in
Section 1, these communication variables are related as

~sji(t) = ~sij(t− τ ij), ~sij(t) = ~sji(t− τ ji). (11)

Upon receiving ~sij , which is the variable ~sji sent by agent
j but delayed in time by τ ji, agent i then recovers rij
from it using (9). Hence, rij contains information about
delayed estimates of its neighbor j. These transformations
are commonly known as scattering transformation [15]. We
assume, ~sij(t) = ~sji(t) = 0 ∀t < 0.

Using the above definitions, we propose the following
lemma which will be useful in proving convergence of
Algorithm 1.

Lemma 3: Consider the following dynamics for each
agent i ∈ [m]:

ẋi = vi −Kiφi(xi), (12)

the transformation (9)-(10) and delays (11) for j ∈ N i, ∀i.
If Assumptions 1-3 hold, then xi → x∗ ∀i ∈ [m] as t→∞.

Proof: See Appendix C.
The following theorem shows global convergence of Al-

gorithm 1.
Theorem 1: Consider Algorithm 1. If Assumptions 1-3

hold, then xi → x∗ ∀i ∈ [m] as t→∞.
Proof: See Appendix D.

IV. SIMULATION RESULTS

Example 2. Consider the following numerical example.
The matrix A is a real symmetric positive definite matrix
from the benchmark dataset1 “bcsstm19” which is part of a
suspension bridge problem. The dimension of A is N = n =
817 and its condition number is 2.337333 ∗ 105. The rows
of A and the corresponding rows of b are distributed among
m = 5 agents, so that four of them know 163 such rows and
the remaining 165 rows are known by the fifth agent. The
network is assumed to be of ring topology and τ ij = 5. We
set b = Ax∗ where x∗ =

[
1 1 . . . 1

]T
is the unique

solution.

1https://sparse.tamu.edu

Fig. 2: Temporal evolution of error norm for estimate of each agent
∥∥xi(t)− x∗∥∥ for Example 2, under (a) Algorithm 1 and projection

algorithm [3], (b) Algorithm 1, (c) under the algorithm in [15]. (a) xi(0) = [0, . . . , 0]T ∀i in each of the cases. (b) η = 300, k = 990,
xi(0) are randomly initialized within [−20, 20]. (c) xi(0) = [3, . . . , 3]T ∀i.

We implement Algorithm 1 on this numerical example.
The differential equations governing xi’s are solved numeri-
cally with small stepsizes h = 10−3. Each agent converge to
the desired solution x∗ irrespective of their initial choice of
estimate (ref. Fig. 2) and convergence rate can be changed by
tuning the algorithm parameters (ref. Fig. 2a). We compare
this result with that of two other algorithms in [15] and [3].
The algorithm in [15] has slower convergence rate (ref.
Fig. 2c) due of ill-conditioning of the matrix A, however
the projection-based algorithm in [3] converges faster (ref.
Fig. 2a). A comparison of the time taken by Algorithm 1
and the projection algorithm is provided in Table II.

TABLE II: Average time taken (in seconds) by Algorithm 1 with
(η = 300, k = 900) and projection algorithm [3] for solving
Example 2 over 5 runs.

Algorithm: Algorithm 1 Projection
algorithm

Time needed before iterations: 0.1775 0.4001
Time needed during iterations: 1.4169 0.6149
Total time needed: 1.5944 1.0150

V. DISCUSSION
In this paper, we proposed a continuous time algorithm

to solve a system of linear algebraic equations Ax = b
distributively when there are delays in the communication
links and the matrix A is ill-conditioned. Our algorithm
utilizes preconditioners in conjunction with the classical
distributed gradient method for optimization. A methodology
for appropriately selecting the local preconditioner matrices
has been provided so that the distributed gradient method
globally converges to the desired solution of a set of equa-
tions Ax = b.

To illustrate the effectiveness of the proposed algorithm,
we have applied it to solving a numerical example. It has
been shown that the rate of convergence can be controlled
by tuning the algorithm parameters, although no bound on
convergence rate has been provided. From simulations, we
have seen that the algorithm in [3] is faster than Algorithm 1.
However, unlike the former algorithm, Algorithm 1 is guar-
anteed to converge without assuming upper bound on the
delays τ ij .

REFERENCES

[1] Peng Wang, Shaoshuai Mou, Jianming Lian, and Wei Ren. Solving a
system of linear equations: From centralized to distributed algorithms.
Annual Reviews in Control, 2019.

[2] Shaoshuai Mou, Ji Liu, and A Stephen Morse. A distributed algo-
rithm for solving a linear algebraic equation. IEEE Transactions on
Automatic Control, 60(11):2863–2878, 2015.

[3] Ji Liu, Shaoshuai Mou, and A Stephen Morse. Asynchronous
distributed algorithms for solving linear algebraic equations. IEEE
Transactions on Automatic Control, 63(2):372–385, 2017.

[4] Brian Anderson, Shaoshuai Mou, A Stephen Morse, and Uwe Helmke.
Decentralized gradient algorithm for solution of a linear equation.
arXiv preprint arXiv:1509.04538, 2015.

[5] S Sh Alaviani and Nicola Elia. A distributed algorithm for solving
linear algebraic equations over random networks. In 2018 IEEE
Conference on Decision and Control (CDC), pages 83–88. IEEE,
2018.

[6] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. De-
centralized consensus optimization with asynchrony and delays. IEEE
Transactions on Signal and Information Processing over Networks,
4(2):293–307, 2017.

[7] Ji Liu, Xiaobin Gao, and Tamer Başar. A communication-efficient
distributed algorithm for solving linear algebraic equations. In 2014
7th International Conference on NETwork Games, COntrol and OP-
timization (NetGCoop), pages 62–69. IEEE, 2014.

[8] Xiaobin Gao, Ji Liu, and Tamer Başar. Stochastic communication-
efficient distributed algorithms for solving linear algebraic equations.
In 2016 IEEE Conference on Control Applications (CCA), pages 380–
385. IEEE, 2016.

[9] Xuan Wang, Shaoshuai Mou, and Dengfeng Sun. Improvement of a
distributed algorithm for solving linear equations. IEEE Transactions
on Industrial Electronics, 64(4):3113–3117, 2016.

[10] Xuan Wang, Jingqiu Zhou, Shaoshuai Mou, and Martin J Corless. A
distributed linear equation solver for least square solutions. In 2017
IEEE 56th Annual Conference on Decision and Control (CDC), pages
5955–5960. IEEE, 2017.

[11] Yang Liu, Youcheng Lou, Brian Anderson, and Guodong Shi. Network
flows that solve least squares for linear equations. arXiv preprint
arXiv:1808.04140, 2018.

[12] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed
asynchronous deterministic and stochastic gradient optimization algo-
rithms. IEEE transactions on automatic control, 31(9):803–812, 1986.

[13] Konstantinos I Tsianos and Michael G Rabbat. Distributed dual
averaging for convex optimization under communication delays. In
2012 American Control Conference (ACC), pages 1067–1072. IEEE,
2012.

[14] Håkan Terelius, Ufuk Topcu, and Richard M Murray. Decentralized
multi-agent optimization via dual decomposition. IFAC proceedings
volumes, 44(1):11245–11251, 2011.

[15] Takeshi Hatanaka, Nikhil Chopra, Takayuki Ishizaki, and Na Li.
Passivity-based distributed optimization with communication delays
using PI consensus algorithm. IEEE Transactions on Automatic
Control, 63(12):4421–4428, 2018.

[16] Tao Yang, Jemin George, Jiahu Qin, Xinlei Yi, and Junfeng Wu. Dis-
tributed finite-time least squares solver for network linear equations.
arXiv preprint arXiv:1810.00156, 2018.

[17] Vassilis Kekatos and Georgios B Giannakis. Distributed robust
power system state estimation. IEEE Transactions on Power Systems,
28(2):1617–1626, 2012.

[18] Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. Network new-
ton distributed optimization methods. IEEE Transactions on Signal
Processing, 65(1):146–161, 2016.

[19] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on Automatic
Control, 54(1):48–61, 2009.

[20] Joao P Hespanha. Linear systems theory. Princeton university press,
2018.

APPENDIX

A. Proof of Lemma 1

It is well-known, if G is connected then (2) is equivalent
to the unconstrained optimization problem (ref. [17], [18])

minimize
x∈Rn,∀i∈[m]

m∑
i=1

1

2

∥∥Aix− bi∥∥2 . (13)

Now the objective cost in (13) can be written as

m∑
i=1

∥∥Aix− bi∥∥2 =

∥∥∥∥∥∥∥
 A

1x− b1
...

Amx− bm


∥∥∥∥∥∥∥
2

= ‖Ax− b‖2 . (14)

Therefore, problems (3) and (13) are equivalent to each
other. Hence, by transitivity property of equivalence relation,
problems (2) and (3) are equivalent to each other.

B. Proof of Lemma 2

For any i ∈ [m],

(λ, v) is an Eigen-pair of K̄i

⇐⇒ (Ki + ηIn)−1(Ki − ηIn)v = λv

⇐⇒ (Ki − ηIn)v = (Ki + ηIn)λv [This implies

λ 6= 1 , otherwise v = 0 is an Eigenvector of K̄i.]

⇐⇒ Kiv =
1 + λ

1− λ
ηv

⇐⇒ (
1 + λ

1− λ
η, v) is an Eigen-pair of Ki.

We have Ki = k(N i)−1, which can easily be verified by
substituting this expression in the Lyapunov equation (6)
which has a unique solution. Then,

λ[Ki] =
k

λ[N i]
=

k

λ[(Ai)TAi] + |N i|
> 0

⇐⇒ 1 + λ

1− λ
η > 0 ⇐⇒ |λ| < 1.

Therefore, K̄i is Schur and the claim follows.

C. Proof of Lemma 3

We begin with the necessary definitions (ref. [15]):

r̄ij = rij − x∗, (15)

x̄i = xi − x∗. (16)

S̄i = (1/2)
∥∥x̄i∥∥2 , (17)

V ij(t) =
1

2

∫ t

t−τ ij

∥∥∥∥~sij(y)− 1√
2η
ηx∗
∥∥∥∥2 dy

+
1

2

∫ t

t−τji

∥∥∥∥~sji(y)− 1√
2η
ηx∗
∥∥∥∥2 dy, (18)

V =
∑
i∈[m]

S̄i +
∑

(i,j)∈E

V ij . (19)

As the proof is long, we outline the steps as follows:
1) Define a suitable time-dependent Lyapunov function

candidate V (ref. (19)) for the combined agent dynam-
ics, where the overall Lyapunov function is contributed
by storage functionals S̄i for individual agents and V ij

for their links.
2) The time derivative of V is shown to be non-positive,

and consensus is established between the agents using
extension on LaSalle’s principle.

3) Finally, asymptotic convergence is established by
showing that the solution set of the time derivative
of the Lyapunov function V being identically zero
only consists of each agent asymptotically reaching the
desired solution x∗.

From (12) and (16),

˙̄xi = ẋi = vi −Kiφi(xi). (20)

From (17), S̄i is “positive definite” and

˙̄Si = (x̄i)T vi − (x̄i)TKi(Ai)TAi(xi − x∗). (21)

From (8), (15) and (16),

vij = Ki(r̄ij − x̄i), vi =
∑
j∈N i

Ki(r̄ij − x̄i).

Substituting them into (21),

˙̄Si =(x̄i)T
∑
j∈N i

Ki(r̄ij − x̄i)− (x̄i)TKi(Ai)TAix̄i

=
∑
j∈N i

[(r̄ij)
T vij − (x̄i − r̄ij)TKi(x̄i − r̄ij)]

− (x̄i)TKi(Ai)TAix̄i. (22)

We use the following facts (ref. proof of Lemma 5 in [15]):

V ij(t) ≥ 0 ∀t (23)

and v̇ij(t) = −(vij)T r̄ij − (vji)T r̄ji. (24)

From (22) and (24) it follows that,

V̇ =−
∑
i∈[m]

∑
j∈N i

(x̄i − r̄ij)TKi(x̄i − r̄ij)

−
∑
i∈[m]

(x̄i)TKi(Ai)TAix̄i ≤ 0 (25)

So, xi ∈ L∞ ∀i. From (8)-(11),

rij(t) = (K̄i)2rij(t− τ ij − τ ji) + βij(t), (26)

where βij(t) are linear functions of xi and xj at times t,
t−τ ij , t−τ ji, t−τ ij−τ ji (ref. [15]). Also βij(t) are bounded
linear, because xi ∈ L∞. Lemma 2 states that Eigenvalues
of K̄i ∀i are within unit circle, if η > 0. Then, (26) is a
stable difference equation with bounded inputs, which means
rij ∈ L∞. So, extension of LaSalle’s principle for time delay
systems is applicable. Now,

V̇ ≡ 0 ⇐⇒ x̄i = r̄ij ∀i, ∀j ∈ N i,∑
i∈[m]

(x̄i)TKi(Ai)TAix̄i = 0. (27)

Thus, LaSalle’s principle implies that

∀i, xi → rij as t→∞∀j ∈ N i. (28)

From (8)-(11) one can see that,

ηrij(t) =
√

2η~sji(t− τ ji)−Ki(rij(t)− xi(t))
=−Kj(rji(t− τ ji)− xj(t− τ ji))

+ ηrji(t− τ ji)−Ki(rij(t)− xi(t)). (29)

From (28) and (29), for every i,∀j ∈ N i,

lim
t→∞

rij(t) = lim
t→∞

rji(t− τ ji) = lim
t→∞

rji(t)

=⇒ lim
t→∞

xi(t) = lim
t→∞

xj(t).

Thus consensus is achieved asymptotically. Then, from (27)
we have

V̇ ≡ 0 =⇒ lim
t→∞

xi(t) = lim
t→∞

x(t)∀i,

lim
t→∞

∑
i∈[m]

(x̄(t))TKi(Ai)TAix̄(t) = 0. (30)

for some x : R → Rn and x̄ := x − x∗. So, the only thing
left to be shown is

lim
t→∞

∑
i∈[m]

(x̄(t))TKi(Ai)TAix̄(t)=0 =⇒ lim
t→∞

x̄(t)=0.

So it is sufficient to show that,∑
i∈[m]

Ki(Ai)TAi � 0. (31)

We have

Ki∈ Sn++, (A
i)TAi∈ Sn+ ∀i=⇒

∑
i∈[m]

Ki(Ai)TAi � 0

For each i, consider the Eigen decomposition (Ai)TAi =
U iΛi(U i)T , where U i is the Eigenvector matrix of (Ai)TAi

and Λi is a diagonal matrix with the Eigenvalues of (Ai)TAi

in the diagonal. Then,

N i = |N i|In + (Ai)TAi = U i(|N i|In + Λi)(U i)T .

We have Ki = k(N i)−1, which can easily be verified by
substituting in the Lyapunov equation (6) which has a unique
solution. Then,

Ki(Ai)TAi = kU idiag{ λik
|N i|+ λik

}nk=1(U i)T ,

where λik are the Eigenvalues of (Ai)TAi ∈ Sn+, and λik =
0 if the kth column of U i is in null(Ai). This also means

Ki(Ai)TAi ∈ Sn+.
Consider any x ∈ Rn, x 6= 0. Now ∃j∗ ∈ [m] s.t.

x /∈ null(Aj∗). Otherwise, x ∈ null(Ai) ∀i which implies
x ∈ null(A). From Assumption 3, null(A) = 0 which is a
contradiction. Now,

xTKj∗(Aj
∗
)TAj

∗
x=k

n∑
k=1

λj∗k
|N j∗ |+ λj∗k

∥∥xTuj∗k∥∥2 . (32)

We consider the nontrivial case where for each i, Ai is not
the zero matrix. Then, a positive Eigenvalue exists, because
(Aj

∗
)TAj

∗ ∈ Sn+ and all of its Eigenvalues cannot be zero.
Define l = n − η((Aj

∗
)TAj

∗
). Then ∃l ≥ 1 such that

λj∗k > 0, k = 1, ..., l (possibly by rearrangement of indices)
and the Eigenvectors {uj∗k}lk=1 6⊂ null((Aj

∗
)TAj

∗
) and

{uj∗k}nk=l+1 = null((Aj
∗
)TAj

∗
). Then,

xTKj∗(Aj
∗
)TAj

∗
x = 0 ⇐⇒ x ⊥ span{uj∗k}lk=1

⇐⇒ x ∈ span{uj∗k}nk=l+1

⇐⇒ x ∈ null((Aj
∗
)TAj

∗
)

Therefore, xTKj∗(Aj
∗
)TAj

∗
x > 0 and the claim follows

from (31).

D. Proof of Theorem 1

For every i ∈ [m], consider the system (12) with the
definitions (9)-(11). Then, Lemma 3 implies that xi → x∗

∀i as t → ∞. So it is enough to show that, there exists
~sij ∀j ∈ N i satisfying definitions (9)-(11) such that the
dynamics in (7) is same as the dynamics (12).

Let

~sij(t) =

√
η

2
xi(t)∀j ∈ N i. (33)

From (11) and the scattering variables chosen as above,

~sij(t) = ~sji(t− τ ji) =

√
η

2
xj(t− τ ji). (34)

From (8), (9) and (34) it can be seen that,

ηxj(t− τ ji) = Ki(rij(t)− xi(t)) + ηrij(t)

=⇒ rij(t) = (Ki + ηIn)−1(ηxj(t− τ ji) +Kixi(t)).

By the above equation and (8),

vij(t) =Ki[(Ki + ηIn)−1(ηxj(t− τ ji) +Kixi(t))− xi(t)]
=ηKi(Ki + ηIn)−1(xj(t− τ ji)− xi(t)), (35)

where the last equality follow from the fact

(Ki + ηIn)−1Ki − In
=(Ki + ηIn)−1Ki − (Ki + ηIn)−1(Ki + ηIn)

=− η(Ki + ηIn)−1.

Equation (35) substituted in (12) leads to (7), and the choice
of variables in (33) satisfy definitions (9)-(11). Therefore,
the claim follows from Lemma 3.

